
The QRZDLL API Specification

Contents
About QRZDLL Latest updates including Win95 Support
Licensing Information For Developers
QRZSearch Initiate a Search
QRZGetNext Retrieve Next Match
QRZInit Initialize QRZDLL
QRZAdvance Advance N Records
QRZAdvanceTo Advance to a Given Record
QRZBack Backup N Records
QRZGetCount Get the Current Record Count
QRZGetSbPos Get the Current SB Position
QRZCount Get the Match Count
QRZReformat Re-format the Current Record
QRZField Get a Particular Record Field
QRZSetFIlter Set the Callsign Prefix Filter
QRZGetCbPos Get the Position of the Read Pointer
QRZSetCbPos Set the Position of the Read Pointer
QRZGetCbSize Get the Size of the Current Database
QRZSetMode Set the Current Search Mode

About QRZDLL
QRZDLL is Copyrighed (c) 1996 by QRZ, and Fred Lloyd, AA7BQ.

QRZDLL was written by Fred Lloyd, AA7BQ, for the third volume of the QRZ!
Ham Radio CDROM. The code was developed so as to enable the author to
use the Visual Basic (tm) development system from Microsoft. In addition,
numerous logbook and amateur related software developers were having
problems keeping up with database format changes so it was determined that an
open .DLL interface to the data would be very useful. By publishing this
interface we allow programmers to maintain independence from future changes
to the QRZ database format. Unfortunately, developers of non-Windows
software won't be helped by this, but then again, neither will the designers of
spark gap transmitters.

If you are using Microsoft's Visual Basic and would like to get started right away,
just have a look at the QRZDEMO.BAS application. This sample application,
which took only about 10 minutes to write, shows just how easy it is to use
QRZDLL. Be sure and include a copy of the GLOBAL.BAS file which contains
all of the constants and declarations used by QRZDLL.

A DLL is like any other program in that over time it can be expected that bugs will
surface and enhancements will be made. QRZDLL is no exception and all
developers can look forward to various enhancements in future editions.

Windows 95 Update

Since this document was first written, an updated version of the DLL has been
created to serve in the Windows 95 and Windows NT environments. The new file,
QRZ32.DLL, has the same general interface as the earlier 16-bit version which
remains unchanged. Programmers should be aware that all of the QRZ32.DLL
functions use 32-bit integers for both calling and return values. To make sure that
32 bit values get used with your compiler you should make sure that all variables
to be used with QRZ32.DLL be declared as type LONG. This goes for users who
program in C++ as well as for those who use VB 4.0.

If you have any comments about this DLL and / or any future enhancements that
you'd like to see (or contribute) please feel free to email me at:
aa7bq@qrz.com

73 from Scottsdale,

-fred

Licensing Information

As the owner of this copy of the QRZ! Ham Radio CDROM and as an
independent software developer, you are hereby granted a royalty-free,
unlimited license to redistribute the QRZDLL.DLL library along with programs that
you write provided that for each program that uses QRZDLL.DLL a message
appears in the "About" box on your program's main menu which states:

Portions of this software courtesy of QRZ, Copyright (c) 1994

QRZSearch
int QRZSearch (Mode, Key1, Key2, Key3, Found, Format)

int Mode /* Search Mode (see below) */
LPSTR Key1 /* Search Key 1 - depends on Mode */
LPSTR Key2 /* Search Key 2 - depends on Mode */
LPSTR Key3 /* Search Key 3 - depends on Mode */
LPSTR Found /* Address of return buffer for result */
int Format /* Return record format type (see below) */

The QRZSearch function is the primary entry to the callsign database.
QRZSearch will locate the first occurence of a given key sequence and return
a result in the buffer pointed to by Found. QRZSearch returns the number of
bytes written to the Found buffer or 0 if no record matching the specified
key(s) was found.

In addition to returning the data in the buffer Found, QRZDLL maintains a
copy of the current record in memory which can be retrieved one field at a
time using QRZField.

Parameter Description
__
Mode Specifies the type of lookup to be performed. Must be one of:

QRZCALL Do Callsign lookup
QRZNAME Do Name lookup
QRZCITY Do City/State lookup
QRZZIP Do Zip Code lookup
QRZSTREET Do Street/City/State lookup

Key1
Key2
Key3 Depending on Mode, the keys are used for varying purposes:

For QRZCALL, Key1 is the callsign or callsign suffix, Key2 and Key3
are unused.

For QRZNAME, Key1 is the Last name, Key2 is the First name (with
an optional space separated middle initial) and Key3 is unused. Key2
is optional but if used is considered wild. For example, when Key2 =
"F", then all first names beginning with the letter "F" are returned. Two
word first names (such as "John Paul") will fail as the database
attempts to find a John P. Somebody. A quoting method will be
introduced in a future release.

For QRZCITY, Key1 is the two-letter state code and Key2 is the city
name. Key1 is mandatory. Key2 is optional, and may contain a
trailing '*' or wildcard. Key3 is unused.

For QRZZIP, Key1 is the zip code to start with and Key2 is the zip code
to end with. Key1 is mandatory and Key2 is optional. When only
Key1 is specified, only those zip codes matching Key1 are returned.
Key1 may not be greater than Key2 are equal to or greater than Key1

up to and including all zip codes which are equal to Key2. Key3 is not
used.

For QRZSTREET, Key1 is the two-letter state code and Key2 is the
city name (same rules as for QRZCITY above). Key3 contains the
substring of the desired street name. For each record matching the
QRZCITY criteria, a string search is performed on the street address
field, returning any records which contain Key3 in them. QRZSTREET
is not indexed on the street names and so its performance will be
noticably slower.

Found When a match is found, it is formatted according to Fmt and placed
into the buffer pointed to by Found.

Format The supported format types which are returned in the Found buffer are:

DISP_FMT Display Format (all data)
MAIL_FMT Mailing Label Format (partial data)
BOOK_FMT Callbook Style Format (partial data)
RAW_FMT Raw Format (full data)
DBF_FMT DBF Format - Quote/comma delimited full data

Notes: The Mode parameter selects one of the 4 presorted databases making
it the default database for all other functions in the library (the Street
and City/State modes use the same database). The system-wide
Mode setting can only be changed by another call to QRZSearch.

Constant Definitions: (as used in Visual Basic)

Const QRZCALL = 1 ' Modes
Const QRZNAME = 2
Const QRZCITY = 3
Const QRZZIP = 4
Const QRZSTREET = 5

Const DISP_FMT = 1 ' Formats
Const MAIL_FMT = 2
Const BOOK_FMT = 3
Const RAW_FMT = 4
Const DBF_FMT = 5

Visual Basic Declaration:

Declare Function QRZSearch Lib "qrzdll.dll" (ByVal Mode as Integer, ByVal Key1 As String, ByVal
Key2 As String, ByVal Key3 As String, ByVal Found As String, ByVal Format as Integer) As
Integer

C Declaration:

int FAR PASCAL QRZSearch(int mode, LPSTR key1, LPSTR key2, LPSTR key3, LPSTR found, int format);

QRZGetNext
int QRZGetNext (Found, Format)

LPSTR Found /* Address of return buffer for result */
int Format /* Return record format type (see QRZSearch) */

The QRZGetNext function retrieves the next logical record matching the key sequence and Mode
specified by a previous call to QRZSearch . The result is returned in the buffer pointed to by Found.
QRZGetNext returns the number of bytes written to the buffer or 0 if no more records were found.

The Found and Format parameters are identical to those used by QRZSearch.

Visual Basic Declaration:

Declare Function QRZGetNext Lib "qrzdll.dll" (ByVal Found As String, ByVal Format as Integer) As
Integer

C Declaration:

int FAR PASCAL QRZGetNext(LPSTR Found, int Format);

QRZInit
int QRZInit (Drive)

LPSTR Drive /* Address of string pointing to CDROM drive */

The QRZInit function is optionally called to initialize the callbook index and to prevent the DLL from
searching for the desired CDROM drive. If QRZInit is not called, QRZDLL will start searching from
drive C: upward until it finds a x:\callbk\callbkc.dat file. Using QRZInit merely shortens the startup
time, and directs the program to a particular drive if multiple drives are available.

QRZinit returns the drive letter used in the low byte of the return value. Otherwise returns 0 on
failure.

Visual Basic Declaration:

Declare Function QRZInit Lib "qrzdll.dll" (ByVal Drive As String) As Integer

C Declaration:

int FAR PASCAL QRZInit(LPSTR drive);

QRZAdvance
int QRZAdvance (Amount, Found, Format)

int Amount /* Number of Records to Advance (seek forward) */
LPSTR Found /* Address of return buffer for result */
int Format /* Return record format type (see QRZSearch) */

The QRZAdvance function moves the current database record pointer forward in an unqualified
manner. It is chiefly used to randomly browse through the database as might be done with a scroll
bar or arrow button. The Amount parameter can be either 1 or 2, in which case the pointer will
advance one record or 100 records, respectively. To move the pointer to a more specific location,
use the QRZAdvanceToTo function. The inverse function, QRZBack, moves the pointer back either 1
or 100 records.

QRZAdvance returns the number of bytes written to the buffer Found.

Note that the actual pointer movement will be an inexact number of records when moving at
distances of greater than 1 record. The actual movement is an approximation based on the
size of an average record (currently 84 bytes per record). Thus, a jump of 100 equals 8,400
bytes forward plus the distance to the start of the next record.

The Found and Format parameters are identical to those used by QRZSearch.

Visual Basic Declaration:

Declare Function QRZAdvance Lib "qrzdll.dll" (ByVal Amount as Integer, ByVal Found As String, ByVal
Format as Integer) As Integer

C Declaration:

int FAR PASCAL QRZAdvance(int Amount, LPSTR found, int Format);

QRZAdvanceTo
int QRZAdvanceTo (Position, Found, Format)

int Position /* Position in Selected Datafile (1/1000) */
LPSTR Found /* Address of return buffer for result */
int Format /* Return record format type (see QRZSearch) */

The QRZAdvanceTo function was created specifically support fast random tabbing through the
database at the rate of 1/1000th of the database per jump. The Position argument specifies the
absolute offset into the selected database file in the range of 0 to 1000. The same caviats regarding
random pointer positioning as mentioned in QRZAdvance apply. QRZAdvanceTo returns the
number of bytes written to the buffer Found.

The Found and Format parameters are identical to those used by QRZSearch.

Visual Basic Declaration:

Declare Function QRZAdvanceTo Lib "qrzdll.dll" (ByVal Position as Integer, ByVal Found As String,
ByVal Format as Integer) As Integer

C Declaration:

int FAR PASCAL QRZAdvanceTo (int Amount, LPSTR found, int Format);

QRZBack
int QRZBack (Amount, Found, Format)

int Amount /* Number of Records to Back up (seek backwards) */
LPSTR Found /* Address of return buffer for result */
int Format /* Return record format type (see QRZSearch) */

The QRZBack function is the logical inverse of the QRZAdvance function. QRZBack moves the current
database record pointer backward by either 1 or 100 records. The exact position may vary due
to the approximation used for record size (84 bytes). For example, to move back by 1 record,
the routine will seek the current pointer back by 300 (84 + 84 + 42) bytes, or two and a half logical
records. It will then seek forward twice, first to the end of the half record and then to read in the
new current record.

The Found and Format parameters are identical to those used by QRZSearch.

Visual Basic Declaration:

Declare Function QRZBack Lib "qrzdll.dll" (ByVal Amount as Integer, ByVal Found As String, ByVal
Format as Integer) As Integer

C Declaration:

int FAR PASCAL QRZBack(int Amount, LPSTR found, int Format);

QRZGetCount
long QRZGetCount ()

The QRZGetCount function returns the number of records which matched the most recent Search
and/or GetNext / Count activity. QRZGetCount simply returns an internal variable, no record
positioning or file I/O takes place. The result is returned as a long integer.

Visual Basic Declaration:

Declare Function QRZGetCount Lib "qrzdll.dll" () As Single

C Declaration:

long FAR PASCAL QRZGetCount();

QRZGetSbPos
int QRZGetSbPos ()

The QRZGetSbPos function was implemented as an adjunct to the QRZAdvanceTo function in that it
returns an integer in the range of 0 to 1000 indicating the relative current position of the record pointer
in the current data file. This value can be used to update a 0-1000 scrollbar or gauge after a search
has been performed.

Visual Basic Declaration:

Declare Function QRZGetSbPos Lib "qrzdll.dll" () As Integer

C Declaration:

int FAR PASCAL QRZGetSbPos();

QRZCount
long QRZCount (More)

int * More /* Flag indicating whether the count is complete */

The QRZCount function returns the number of records which the most recent Key sequence and
Mode used in QRZSearch . would return if QRZGetNext were used. Internally, QRZCount
repetitively calls QRZGetNext but saves time by not formatting the records. The database position
pointer is modified as a result of this call and is left pointing at the start of the second record which
failed to match the Key sequence. The result is returned as a long integer. QRZBack can be used
to back the pointer up to the last record which matched.

QRZCount must be called repetitively until the More flag returns false. The scanning mechanism
returns after each 100 records to give the user interface program a chance to abort the operation in
the event that it becomes excessively long. The value returned by QRZCount grows larger with
each call and only the value returned when More is false is correct.

Visual Basic Declaration:

Declare Function QRZCount Lib "qrzdll.dll" (More as Integer) As Long

C Declaration:

long FAR PASCAL QRZCount(int *More);

QRZReformat
int QRZReformat (Format, Found)

int Format /* Return record format type (see QRZSearch) */
LPSTR Found /* Address of return buffer for result */

The QRZReformat function reformats the current record stored in memory to the indicated Format
and returns it in the buffer pointed to by Found. No record pointer or file I/O takes place. The
current record count remains unchanged. QRZReformat returns the number of bytes written to the
buffer Found.

Visual Basic Declaration:

Declare Function QRZReformat Lib "qrzdll.dll" (ByVal Format as Integer, ByVal Found As String) as
Integer

C Declaration:

int FAR PASCAL QRZReformat(int Format, LPSTR Found);

QRZField
void QRZField (Field, Found, ReturnLen)

int Field /* Return record format type (see QRZSearch) */
LPSTR Found /* Address of return buffer for result */
int *ReturnLen /* Address of Return Length variable */

The QRZField function fetches an individual record field from the current record in memory. The
value Field is set to indicate which field is desired. The result is returned in the buffer pointed to by
Found. No record pointer or file I/O takes place. The current record count remains unchanged.
The variable ReturnLen, passed as a pointer, is set to indicate the length of the field copied to Found.

Field Values: Description:
__

CALLS Callsign
LNAME Last Name
JR Jr / Sr / II / etc.
Fname First Name
MI Middle Initial
DOB Date of Birth as mm/dd/yy
EFDATE License Effective Date as mm/dd/yy
EXPDATE License Expiration Date as mm/dd/yy
MAIL_STR Street Address
MAIL_CITY City
MAIL_ST State
MAIL_ZIP zip code
CLASS License Class
P_CALL Previous Callsign
P_CLASS Previous Class
NUM_FIELDS Number of Fields in record
FULLNAME Full Name as JOHN P. SMITH JR
FULLCITY Full City as PHOENIX, AZ 85008

Visual Basic Declarations:

Declare Sub QRZField Lib "qrzdll.dll" (ByVal Field as Integer, ByVal Found As String, ReturnLen as
Integer)

Visual Basic Constants:

Const CALLS = 0
Const LNAME = 1
Const JR = 2
Const Fname = 3
Const MI = 4
Const DOB = 5
Const EFDATE = 6
Const EXPDATE = 7
Const MAIL_STR = 8
Const MAIL_CITY = 9
Const MAIL_ST = 10
Const MAIL_ZIP = 11
Const CLASS = 12

Const P_CALL = 13
Const P_CLASS = 14
Const NUM_FIELDS = 15
Const FULLNAME = 100
Const FULLCITY = 101

C Declaration:

void FAR PASCAL QRZField(int Field, LPSTR Found, int *ReturnLen);

QRZSetFilter
void QRZSetFilter (Filter)

LPSTR Filter /* String containing single character filters */

The QRZSetFilter function is provided to tell QRZDLL which initial prefix characters to exclude from
the callsign match routines. The filter only affects the QRZCALL search Mode. For example,
passing the string "VG" would exclude all callsigns beginning with the letters 'V' or 'G', and in our
case, all Canadian and UK callsigns. This filtering will be expanded to include multicharacter
prefixes in a future edition of the library.

Visual Basic Declaration:

Declare Sub QRZSetFilter Lib "qrzdll.dll" (ByVal Filtstr As String)

C Declaration:

void FAR PASCAL QRZSetFilter(LPSTR filt)

QRZGetCbPos
long QRZGetCbPos ()

The QRZGetCbPos function returns the current offset in bytes of the record pointer within the current
database file. The current record pointer is nearly always sitting at the start of the next record to be
fetched. The call is equivalent to performing a C runtime library call to ftell(fp) on the open file.

Visual Basic Declaration:

Declare Function QRZGetCbPos Lib "qrzdll.dll" () as Single

C Declaration:

long FAR PASCAL QRZGetCbPos()

QRZSetCbPos
int QRZSetCbPos (Position)

Long Position /* new record pointer position in bytes */

The QRZSetCbPos function sets offset the record pointer from the beginning the current database
file in bytes. The call is equivalent to performing a C runtime library call of
fseek(fp,Position,SEEK_SET) on the open file. The record pointer may be positioned at any byte in
the within of any record of the datafile. QRZSetCbPos returns 0 if was successful.

Visual Basic Declaration:

Declare Function QRZSetCbPos Lib "qrzdll.dll" (ByVal Position as Single) as Integer

C Declaration:

int FAR PASCAL QRZSetCbPos(long Position)

QRZGetCbSize
long QRZGetCbSize ()

The QRZGetCbSize function returns the size of the current data file in bytes. Using this number
along with QRZSetCbPos can be done to implement a binary search on the database. The
exact excercize is left up the the programmer.

Visual Basic Declaration:

Declare Function QRZGetCbSize Lib "qrzdll.dll" () as Single

C Declaration:

long FAR PASCAL QRZGetCbSize()

QRZSetMode
int QRZSetMode (Mode)

int Mode /* flag indicating new database Mode */

The QRZSetMode function selects a given database and makes it current. The position of the
current read pointer is restored to its last used position during the current instance of the program.
QRZSetMode returns a 0 if there was any problems accessing the database.

The relavent Mode flags are discussed in the QRZSearch section of this document.

Visual Basic Declaration:

Declare Function QRZSetMode Lib "qrzdll.dll" (ByVal Mode as Integer) as Integer

C Declaration:

int FAR PASCAL QRZSetMode(int Mode);

QRZGetDbName
int QRZGetDbName (Found, ReturnLen)

The QRZGetCbSize function returns the size of the current data file in bytes. Using this number
along with QRZSetCbPos can be done to implement a binary search on the database. The
exact excercize is left up the the programmer.

Visual Basic Declaration:

Declare Function QRZGetCbSize Lib "qrzdll.dll" () as Single

C Declaration:

long FAR PASCAL QRZGetCbSize()

